
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/277967155

A Survey of Interactive Remote Rendering Systems

Article in ACM Computing Surveys · May 2015

DOI: 10.1145/2719921

CITATIONS

26
READS

1,369

2 authors, including:

Shu Shi

AT&T

25 PUBLICATIONS 286 CITATIONS

SEE PROFILE

All content following this page was uploaded by Shu Shi on 15 December 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/277967155_A_Survey_of_Interactive_Remote_Rendering_Systems?enrichId=rgreq-8b0adca40b4d05003f31e2da4a96a2c7-XXX&enrichSource=Y292ZXJQYWdlOzI3Nzk2NzE1NTtBUzozMDY5Mzg2ODY5Njc4MDhAMTQ1MDE5MTI5MzA3Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/277967155_A_Survey_of_Interactive_Remote_Rendering_Systems?enrichId=rgreq-8b0adca40b4d05003f31e2da4a96a2c7-XXX&enrichSource=Y292ZXJQYWdlOzI3Nzk2NzE1NTtBUzozMDY5Mzg2ODY5Njc4MDhAMTQ1MDE5MTI5MzA3Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-8b0adca40b4d05003f31e2da4a96a2c7-XXX&enrichSource=Y292ZXJQYWdlOzI3Nzk2NzE1NTtBUzozMDY5Mzg2ODY5Njc4MDhAMTQ1MDE5MTI5MzA3Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shu_Shi2?enrichId=rgreq-8b0adca40b4d05003f31e2da4a96a2c7-XXX&enrichSource=Y292ZXJQYWdlOzI3Nzk2NzE1NTtBUzozMDY5Mzg2ODY5Njc4MDhAMTQ1MDE5MTI5MzA3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shu_Shi2?enrichId=rgreq-8b0adca40b4d05003f31e2da4a96a2c7-XXX&enrichSource=Y292ZXJQYWdlOzI3Nzk2NzE1NTtBUzozMDY5Mzg2ODY5Njc4MDhAMTQ1MDE5MTI5MzA3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/AT_T?enrichId=rgreq-8b0adca40b4d05003f31e2da4a96a2c7-XXX&enrichSource=Y292ZXJQYWdlOzI3Nzk2NzE1NTtBUzozMDY5Mzg2ODY5Njc4MDhAMTQ1MDE5MTI5MzA3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shu_Shi2?enrichId=rgreq-8b0adca40b4d05003f31e2da4a96a2c7-XXX&enrichSource=Y292ZXJQYWdlOzI3Nzk2NzE1NTtBUzozMDY5Mzg2ODY5Njc4MDhAMTQ1MDE5MTI5MzA3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shu_Shi2?enrichId=rgreq-8b0adca40b4d05003f31e2da4a96a2c7-XXX&enrichSource=Y292ZXJQYWdlOzI3Nzk2NzE1NTtBUzozMDY5Mzg2ODY5Njc4MDhAMTQ1MDE5MTI5MzA3Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

1

A Survey of Interactive Remote Rendering Systems

Shu Shi, AT&T Labs Research

Cheng-Hsin Hsu, National Tsing-Hua University

Remote rendering means rendering 3D graphics on a computing device and displaying the results on an-
other computing device connected through a network. The concept was originally developed for sharing
computing resources remotely. It has been receiving increasing attention from researchers in both academia
and industry in recent years due to the proliferation of cloud computing and mobile devices. In this article,
we survey the interactive remote rendering systems proposed in the literature, analyze how to improve the
state-of-the-art, and summarize the related technologies. The readers of this article will understand the
history of remote rendering systems and obtain some inspirations of the future research directions in this
area.

Categories and Subject Descriptors: H.5.1 [Multimedia Information System]: Video

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Cloud computing, cloud games, cloud rendering, distributed rendering,
video streaming, QoS, QoE

1. INTRODUCTION

1.1. What is Remote Rendering?

A remote rendering system runs rendering applications on one computing device,
which is referred to as rendering server or server, and displays the rendering results on
another network-connected computing device, which is referred to as client. An inter-
active remote rendering system is capable of accepting user controls through the input
devices on a client to interact with the rendering applications running on a server (Fig-
ure 1). In this survey, we focus on the interactive remote rendering systems that are
designed specifically for 3D graphics. Unless otherwise noted, the short term “remote
rendering” is used herein to indicate “interactive remote rendering for 3D graphics”.

The concept of remote rendering appeared early when PCs were not powerful enough
to process 3D graphics rendering. Initial research in this area investigated the poten-
tial of sharing a dedicated graphics workstation over networks to provide remote ren-
dering services [Ohazama 1999]. In recent years, the wide deployment of high-speed
wireless networks and the rising prosperity of mobile cloud computing have brought
more research interests into remote rendering. Beermann and Humphreys [2003] pre-
dicted that graphics rendering would become a remote service and this prediction came
true with the emergence of cloud gaming [Ross 2009].

Compared to the conventional approach that performs rendering locally, remote ren-
dering has several advantages. First, it can provide rich rendering experiences to
“thin” clients (e.g., mobile devices) with limited computing resources (i.e., GPU, mem-

Author’s addresses: S. Shu, AT&T Labs Research, 1 AT&T Way, Bedminster, NJ 07921, USA; email:
shushi@research.att.com. C. Hsu, Department of Computer Science, National Tsing Hua University, No.
101 Sec. 2 Kuang-Fu Road Hsin-Chu City, Taiwan; email: chsu@cs.nthu.edu.tw.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 0360-0300/2014/01-ART1 $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:2 S. Shi and C. Hsu

Source 3D
Contents

Rendering Results

Control Signals

DisplayNetwork

User Interaction

Fig. 1. Basic remote rendering framework

ory, power, etc.). Second, the computing resources on a rendering server can be effi-
ciently shared by multiple clients. Third, remote rendering is a simple but effective
cross-platform solution. After developing the client programs for different platforms,
all applications need only be developed for the server and the same rendering experi-
ence will be achieved on all client platforms. Last but not the least, a remote render-
ing system can be designed to prevent the source contents from leaking to malicious
users by streaming only rendering results to clients. In cloud gaming, for example, the
currently deployed remote rendering solutions can prevent pirating concerns because
game contents are never sent to gamers.

1.2. Key Challenges

Different remote rendering systems have been designed to target various problems
and challenges. In this survey, we give a broad overview of the different types of remote
rendering designs that have been proposed over the years. Our discussion focus on two
fundamental problems: how to reduce interaction latency and how to transmit data
from server to client effectively and efficiently.

We define “interaction latency” as the time from the generation of a user interaction
request until the appearance of the first updated frame on the client screen. As an
intrinsic problem of all network distributed systems, latency plays an important role
in evaluating system performance and QoE (Quality of Experience) [Wang and Dey
2009]. Long interaction latency can significantly impair user experience. For example,
100 ms is the largest tolerable latency for an intensive first person shooting game
[Beigbeder et al. 2004]. Therefore, the minimization of interaction latency is a major
concern and we will review all related latency reduction techniques that can be applied
to remote rendering.

Data transmission is always the core module of any remote rendering system. In
most cases, a data transmission module design should consider all sorts of constraints,
such as limited bandwidth, various channel conditions, and real-time requirements.
More importantly, the success of data streaming has a direct impact on the overall sys-
tem performance. In this article, we mainly discuss three aspects of data transmission:
compression, streaming protocols, and QoS/QoE evaluation.

1.3. Related Work

Thin Clients and Remote Sharing. Thin client systems (e.g., SLIM [Schmidt et al. 1999],
THiNC [Baratto et al. 2005], etc.) and remote desktop sharing systems (e.g., VNC
[Richardson et al. 1998], RDP [Cumberland et al. 1999], etc.) allow users to access
applications remotely and share computing resources. Users on the client side can in-
teract with the applications running on the server side. Nevertheless, there are key
differences between those systems and the remote rendering systems surveyed in this
article.

First, most thin client and remote sharing systems appeared before 3D graphics ren-
dering became popular. Early systems were only designed to support sharing desktop

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

A Survey of Interactive Remote Rendering Systems 1:3

elements and rendering 2D graphics. Only the recent approaches started to add sup-
port for 3D graphics (e.g., THiNC [Baratto et al. 2005], TurboVNC [Commander 2007],
etc.). Second, the main research goal of sharing 2D applications is to design protocols
that can efficiently update regional changes on the screen. This is because 2D render-
ing is considered lightweight, such that it can either happen on a server or a client.
However, this assumption does not apply to 3D graphics due to the significantly in-
creased rendering complexity. Last, 3D applications like video games usually refresh
the whole screen at a much higher rate. Such applications also require different com-
pression and streaming methods that are different from those used in conventional 2D
thin client systems.

In this article, we will not include further detail on any specific thin client or remote
sharing design (the systems that support 3D graphics will be briefly introduced in
Section 2 for comparison with other remote rendering approaches). Therefore, readers
are referred to other surveys [Yang et al. 2002; Lai and Nieh 2006] for information on
those systems.

Distributed Graphics and Cluster Rendering. Another related work is distributed graphics.
When the rendering computation is too complex for one server to execute, or the dis-
play system is a wall of multiple screens [Staadt et al. 2003], such as CAVE [DeFanti
et al. 2011] and SAGE [Renambot et al. 2004], the rendering workload is divided and
distributed to multiple servers for parallel executions and the final rendering images
of these servers are stitched together. Such systems share similar network distributed
architecture to remote rendering systems but solve a totally different research prob-
lem. Distributed rendering mainly focuses on how to divide computation for paral-
lel rendering in a cluster, while remote rendering focuses on how server and client
interact with each other. Examples of distributed rendering efforts include WireGL
[Humphreys et al. 2001], Chromium [Humphreys et al. 2002], OpenGL Multipipe SDK
[Bhaniramka et al. 2005], ParaView [Cedilnik et al. 2006], and Equalizer [Eilemann
et al. 2009]. Although we are not going to cover distributed graphics or cluster render-
ing in more depth in this survey, we believe that the future remote rendering systems
will adopt distributed graphics to improve the rendering performance for rendering-
intensive applications.

1.4. Overview of this Survey

In Section 2, we survey some background information on rendering systems and review
the remote rendering designs proposed for various applications. In Section 3, we use a
specific example of the state-of-the-art cloud gaming systems to explain in detail the
challenges of remote rendering. Next, we survey different techniques that can address
two key challenges in Section 4 and Section 5, respectively. Section 6 shares our vision
of the future research directions in this area, and Section 7 concludes the survey.

2. REMOTE RENDERING SYSTEMS IN THE LITERATURE

In this section, before we jump into the details of how remote rendering systems are
built, we first review the rendering framework of X Window systems and how to modify
X to a general-purpose remote rendering system. Next, we list the specialized remote
rendering systems that have been designed for various applications. Last, we summa-
rize with a novel classification method based on the type of data transmitted between
server and client.

2.1. Rendering Basics

We take Unix/Linux as example to review some basic knowledge of rendering. The
rendering system of Unix/Linux is managed by X [Scheifler and Gettys 1986]. Figure

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:4 S. Shi and C. Hsu

Application

Xlib

Application

Xlib

Network

X Server
(Local)

Device Driver

User

Space

Kernel

Space

X11

Commands

X11

Events

X11 Protocols

X Server
(Remote)

Device Driver

Fig. 2. X Window server-client model

Application

XliblibGL

X Server
(Local)

2D Driver3D Driver

X11
Commands X11

Events

3D data
(geometry,
texture),
OpenGL
commands

Vertex
Operation

Primitive
Assembly

Vertex
Data

Geometry Path

Display
List

Texture
Memory

Pixel
Transfer

Rasteriza-
tion

Fragment
Operation

Frame
Buffer

Pixel
Data

Image Path

glRenderMode(GL_FEEDBACK)

glReadPixels() glReadPixels() / glCopyPixels()

3D Graphics Rendering Pipeline

Fig. 3. OpenGL and X

2 shows an illustration of this server-client based window system. Each X application
runs as a client while the operating system hosts an X server that directly connects
to the hardware driver. An X application (X client) sends low level XLib operation
commands to an X server using X11 protocols and the X server executes the rendering
operations and displays the final image. X is network-transparent, meaning that an X
application can connect to a remote X server by sending XLib operations over networks.

X was originally designed for 2D graphics. The evolution of 3D graphics rendering
and OpenGL [Woo et al. 1999] makes the system more complex. The X server can di-
rectly interpret and execute XLib operations for 2D graphics, but not for 3D. The 3D
rendering operations comprise the commands for data description (including both ge-
ometry and texture) and 3D drawing. The rendering process requires the support of a
3D graphics driver (Figure 3), which can consist of either graphics hardware or soft-
ware libraries. The number and size of 3D operations for rendering one frame depend
on the complexity of 3D data. For a complex scene with millions of polygons, render-
ing even one single frame requires passing a huge amount of data to the 3D graphics
driver. In order to reduce the overhead of passing 3D rendering operations, X allows
OpenGL programs to bypass the X server and send all 3D operations, including both
drawing and data commands, to the OpenGL driver directly.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

A Survey of Interactive Remote Rendering Systems 1:5

2.2. General Purpose Solutions

Apparently, the network-transparent nature of X makes it a good platform to imple-
ment remote rendering. GLX was designed as the OpenGL extension for X1. It com-
prises an API that provides the OpenGL functions to X applications, an extension of
the X protocol that allows the X client to send 3D rendering operations to the X server,
and an extension to the X server that can pass 3D rendering operations to the under-
lying OpenGL driver. GLX allows 3D graphics rendering applications to display on a
remote X server like all other 2D applications (Figure 4(a)).

The problem with this command streaming approach is that 3D rendering is actu-
ally performed on the client side. All geometry models, texture maps, and operation
commands are streamed to the client before rendering can begin. For applications that
perform complex graphics rendering, streaming all graphical data to the client may
require excessive network bandwidth.

Application

XliblibGL

Network

2D/3D
X Server
(Remote)

2D
Driver

3D
Driver

X11

Commands

X11

Events

OpenGL / GLX

OpenGL

Server Client

(a)

Application

XliblibGL VirtualGL

X Server
(Local)

2D Driver3D Driver

OpenGL

Rendered
Image

2D
X Server
(Remote)

VirtualGL
Client

Uncompressed
Image

VirtualGL Image Transport

X11 Events

X11 Commands

Network

Server Client

(b)

Fig. 4. Two general-purpose remote rendering solutions based on the X system: (a) GLX; (b) VirtualGL
[Commander 2007]

A different approach was introduced by Stegmaier et al. [2002; 2003]. Only 2D oper-
ations are sent to the X server (on the client side) while 3D operations are rendered on
the server side. The 3D rendering image is captured and streamed to the client, where
it is merged with 2D rendering results. This image streaming approach led to an open
source project: VirtualGL [Commander 2007]. Figure 4(b) shows an illustration of the
VirtualGL framework.

The bandwidth usage for the image streaming approach is predictable and bounded.
This is because the streaming bandwidth is proportional to the display resolution and
refresh rate. In the worst case when very complex 3D scenes are rendered, the image
streaming approach may require much less network bandwidth than the command
streaming approach mentioned above. Moreover, using the image streaming approach
requires no special graphical hardware on the client side.

Both GLX and VirtualGL are two examples of general-purpose remote rendering
solutions. They can support any OpenGL applications without extra efforts from de-
velopers to modify the source code for remote rendering. There have also been several
proprietary solutions belonging to this category, including SGI’s OpenGL Vizserver
[Ohazama 1999], HP’s Remote Graphics Software (RGS) [HP 2006], and Mercury In-
ternational Technology’s ThinAnywhere [Technology 2007].

1WGL [Paik] and CGL [Apple 2009] are similar interfaces provided for Windows and Mac OS X, respectively.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:6 S. Shi and C. Hsu

The modern thin-client systems that support 3D graphics can also be considered
to be general-purpose solutions. Both command streaming and image streaming ap-
proaches have been applied in those systems. For example, THiNC [Baratto et al. 2005]
took a command streaming approach. The server creates a pseudo video card driver to
collect all low-level drawing operations, including both OpenGL and 2D drawing com-
mands. On the other hand, TurboVNC [Commander 2007] was an image streaming
approach. The server maintains a software frame buffer to save all graphical outputs
and sends the updates to the frame buffer to the client with an open protocol, known
as Remote Frame Buffer (RFB).

Although the general-purpose solution has the advantage of being compatible with
any 3D application, it also loses the flexibility of customized optimization. Most remote
rendering systems in the literature have not taken the general-purpose approach, but
instead were designed and optimized for specific applications.

2.3. Specialized Solutions

We classify all specialized remote rendering solutions based on two dimensions (Fig-
ure 5). The 3D model data are either dynamic or static, depending on whether they are
constantly updated during executions. The user interactions are either restricted or
unrestricted, depending on whether users are totally free to change the camera posi-
tion, orientation, and other actions. Remote rendering solutions in different categories
impose different design considerations. Detailed descriptions of these four categories
are given below.

S
ta
ti
c

D
y
n
a
m
ic

Restricted Unrestricted

User interaction

3
D
 M
o
d
e
l
D
a
ta

Fig. 5. Four categories of specialized remote rendering systems and sample applications

Static Model & Restricted Interaction. The systems belonging to this category render
static 3D models and support restricted user interactions. “Restricted user interac-
tion” means a user can only interact with the 3D data in a few limited ways. For
example, a user can view a 3D model only from a few pre-defined viewpoints or change
the viewpoint within a limited range. Most remote visualization systems belong to
this category. Visualization systems are widely demanded to present various types of
data, such as medical images, scientific data, industry designs, and artworks. Many
visualization systems perform rendering remotely due to the complexity of the source
data or the limitations of presentation devices.

Bethel [2000] built a visualization system for large-volume scientific data visualiza-
tion. Since the volume date is too large to be transmitted over a network, it is stored
on a server and only the rendering results are transmitted to client devices. Ma and
Camp [2000] addressed the issues of rendering time-varying volume data in parallel
on multi-core servers. Engel et al. [2000] developed a system to visualize large-scale
medical volume data sets by converting the volume data to 2D slices. Prohaska et

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

A Survey of Interactive Remote Rendering Systems 1:7

al. [2004] designed an interactive Micro-CT scan exploration system to retrieve only
sub-volume data from the storage server and render a much smaller data set locally.
Ma and colleagues [Ma 2010; Tikhonova et al. 2010] adopted explorable images in
remote visualization systems to allow users to manipulate rendering properties (e.g.,
color and opacity) on low-end hardware, such as mobile devices. The Deep Computing
Visualization (DCV) system [Snell and Willard 2007] from IBM and the Chromium
Render Server [Paul et al. 2008] are two examples of using clusters to render large
and complex data in parallel.

Remote visualization has also been applied to provide rich rendering experiences
on less powerful devices. Diepstraten et al. [2004] suggested generating a simplified
model with only line primitives for clients that have no 3D graphics hardware, but can
run 2D rasterization operations. Duguet and Drettakis [2004] converted 3D models to
downscaled point clouds for clients with small display screens. Levoy [1995] proposed
a hybrid solution to generate a simplified low-quality polygon representation as well
as a difference image, avoiding loss of rendering quality on the client side. Mann and
Cohen-Or [1997] designed a similar system that streams both polygons and pixels, but
focused on selecting the most important pixels to save bandwidth.

Web-based remote visualization addresses a special type of “thin” client. It enables
any client to access the rendering services through a standard web browser. The lim-
itations of such systems include the overhead of standard web communications and
the unknown computational capability available on the client. The Reality Server
[Nvidia 2009] from Nvidia has was released to provide photorealistic rendering ser-
vices through the web. Yoon and Neumann [2000] designed a web-based system using
IBR (Image-Based Rendering) techniques.

Mobile-based remote visualization addresses another type of “thin” client: mobile
devices (e.g., smartphones and tablets). [Woodward et al. 2002] and [D’Amora and
Bernardini 2003] were two early attempts to use a PDA as a CAD (Computer-Aided
Design) viewer while the actual CAD application ran on a remote server. Chang and
Ger [2002] proposed building LDIs (Layered Depth Images) [Shade et al. 1998] on
the server. The mobile client runs IBR algorithms to synthesize the display image.
Such studies may seem “outdated” now because mobile chips have been drastically
improved over the last decade. Current mobile devices are equipped with relatively
powerful multi-core GPU chips for complex 3D graphics rendering. However, the limi-
tations on mobile devices still exist for computationally-intensive applications such as
video games, which we will discuss in more depth in the following sections.

Remote visualization systems can serve other purposes. Koller et al. [2004] devel-
oped a remote rendering system to prevent the valuable 3D model data scanned from
famous artworks from leaking to malicious users. This system took an image stream-
ing approach by sending only the rendering results to the user, effectively protecting
the 3D source data. [Mark 1999] and [Smit et al. 2009] are two examples of how re-
mote rendering can help boost the rendering rate when the server is unable to render
fast enough. In their designs, the server only renders the key frames and the client
runs the IBR algorithm to interpolate new frames between key frames. As a result,
the perceived frame rate on the client side can be doubled or tripled compared to the
actual rendering frame rate on the server side.

Dynamic Model & Restricted Interaction. For some applications like 3D video or anima-
tion, the 3D data is dynamically generated or updated and the scene is constantly
changing. Rendering such applications requires that every frame be processed in real
time before the arrival of the next frame. No offline preparation or time-consuming
server computation (e.g., running time-consuming polygon simplification algorithms

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:8 S. Shi and C. Hsu

or creating LDIs for the model) can be applied to this category of remote rendering
systems.

Shi et al. [2008] proposed rendering depth images for 3D tele-immersive video (point
cloud based), and exploited IBR algorithms to reduce the viewpoint change latency [Shi
et al. 2009; Shi et al. 2010]. Lamberti et al. [2003] introduced an image-based remote
rendering framework for mobile clients and proposed a more advanced approach in
[Lamberti and Sanna 2007]. Moreover, Humphreys et al. [2002] developed an improved
video streaming system that employed rendering clusters for not only 3D rendering but
also real-time video coding.

Static Model & Unrestricted Interaction. “Unrestricted interaction” means the user can
freely change the viewpoint in the 3D space and even perform other actions that can
change the 3D data. The representative application of this category is VE (Virtual En-
vironment) navigation. VE navigation and walk-through systems have been commonly
adopted in online games and VR (Virtual Reality) systems [Singhal and Zyda 1999].
The major challenge of VE navigation is that the graphic model of the whole VE is
considered too large to be transmitted fast enough for real-time interactive rendering.
There are two main directions of VE research. One branch focuses on the peer-to-peer
communications between multiple users to synchronously render the virtual world
[Funkhouser 1995] and the other studies how to efficiently stream the virtual world
from the central server to end users [Cohen-Or et al. 2003]. Here we survey the sys-
tems of the second branch that fall into the scope of remote rendering.

Schmalstieg [1997] proposed using a remote rendering pipeline to manage the ge-
ometry and bandwidth in a distributed VE. The pipeline uses the server as a graphic
model database and transmits only the viewable models based on the user’s view-
point. The server database organizes all 3D graphic models as different LODs (levels
of detail) and stores them in Oct-Tree structures. For different zones of AOIs (areas
of interest), different LODs are transmitted. [Teler and Lischinski 2001] was a simi-
lar approach to streaming partial scenes in 3D format based on visibility, but it also
took into consideration network condition and user motion pattern. However, it is not
necessary to transmit all original 3D models to client because only the object surfaces
are visible in such walk-through applications. Lluch et al. [2005] constructed multi-
resolution meshes for remote rendering. Only the surface plus depth, also called 2.5D
mesh, is created. Different techniques to build and store multi-resolution meshes are
surveyed in [De Floriani and Magillo 2002]. A real-time system to extract a 2.5D mesh
for remote rendering was proposed in [Li et al. 2011].

There are also VE systems taking the image streaming approach. The QuickTime
VR system [Chen 1995] creates a 360-degree panorama image of the world based on
the user’s location. This environment map allows the client to pan around without any
special graphical hardware or further updates from the server. Boukerche and Pazzi
[2006] followed the same direction and developed a mobile VE navigation system based
on panorama rendering. Bao and Gourlay [2004] designed a VE walk-through system
using a different image-based approach. In their system, the server renders the virtual
scene and sends the result image with the depth map to the client. The client can
display the received images or run IBR algorithms to synthesize new images when the
rendering viewpoint is changed. Noimark and Cohen-Or [2003] introduced an MPEG-4
streaming-based VE walk-through system. The VE scenes are constantly rendered on
the server at a preset frame rate and encoded in real time using the MPEG-4 standard.
This approach does not need to analyze the source 3D models to determine LOD, but
requires constant network bandwidth between server and client for video streaming.
[Lamberti et al. 2003; Quax et al. 2006] both proposed similar video-based rendering
frameworks for mobile users.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

A Survey of Interactive Remote Rendering Systems 1:9

Dynamic Model & Unrestricted Interaction. Cloud gaming is the representative application
of this last category. The emergence of cloud gaming services has moved the rendering
computations of 3D video games to the cloud. Compared to other specialized remote
rendering approaches, such as those introduced above, rendering video games remotely
is a much more challenging task. First, the latest video games require very complex
3D graphics rendering to present the virtual world, avatars, and animation effects.
Cloud gaming therefore requires advanced graphical hardware for rendering. Second,
games need to be rendered at a high frame rate (e.g., 30 fps or higher) to accommodate
the dynamically changing scenes and intensive motions. Last, but most importantly,
long latency is intolerable. As we have mentioned in Section 1, 100 ms is the largest
tolerable interaction latency for first person shooting games [Beigbeder et al. 2004].

Several companies have provided cloud gaming services and solutions, such as On-
Live2, which uses a video streaming approach that renders video games in the cloud
and sends gameplay scenes as a 720p video stream to end users. Similar service
providers include GaiKai3, and G-Cluster4. Another newly started company Ciinow5

claims to stream both video and graphics to the client. We believe these commercial
cloud gaming systems are the state-of-the-art in remote rendering systems, and we
will discuss them in greater technical detail in the next section.

Researchers in academia have been working on the same topic. Game@Large [Eis-
ert and Fechteler 2008; Nave et al. 2008] proposed to send 3D graphics data to the
client. The graphics rendering operations and textures are effectively compressed and
transmitted using the RTP protocol. Jurgelionis et al. [2009] improved Game@Large
with a hybrid approach. For “fat” clients, all graphics rendering operations and tex-
tures are streamed as the original Game@Large design. For “thin” clients that do not
have enough 3D rendering resources, games are rendered on the server and the re-
sult images are compressed with H.264 [Wiegand et al. 2003] for the client. Winter
et al. [2006] proposed another hybrid approach: video streaming is used for intensive
motion sequences, and graphics data is delivered to render static scenes. [Tizon et al.
2011; Wang and Dey 2013] both studied the issues of cloud gaming for mobile devices.
GamingAnywhere [Huang et al. 2013] is an open cloud gaming platform, which may
be used by researchers, developers, and gamers to set up testbeds. Various customiza-
tions on GamingAnywhere are possible, such as dropping in an H.264/MVC [Vetro
et al. 2011] codec to support stereoscopic games.

2.4. Classification and Summary

In this section, we have given a brief overview of different remote rendering designs.
Here, we propose a classification method to summarize those designs and highlight
their pros and cons. Our classification method is inspired by the survey for distributed
graphics systems [Zhou 2006], in which different systems are classified according to
the stage at which the rendering pipeline is split between the server and the client
[Prohaska et al. 2004]. However, that method is unable to classify the complex remote
rendering designs, e.g., the systems that generate environment maps or depth images.
Thus, we propose a new classification method based on the type of data transmitted
from the server to the client. It is sufficient to cover all remote rendering designs we
have reviewed and characterize how rendering computations are distributed. For ex-
ample, the remote rendering systems taking the image streaming approach belong to
the Image category, because only the image frames of the rendering results are trans-

2http://www.onlive.com
3http://www.gaikai.com
4http://www.gcluster.com/
5http://www.ciinow.com

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:10 S. Shi and C. Hsu

Table I. Summary of remote rendering systems

Data Type Description

Original
Model

Server: transmit all 3D data to client
Client: perform 3D graphics rendering when all data is received
Pros: general-purpose
Cons: “fat” client; excessive bandwidth for complex models
Examples: [Phil Karlton 2005; Eisert and Fechteler 2008]

Progressive
Model

Server: transmit all 3D data progressively to client, based on viewpoint or multi-
resolution representation
Client: perform 3D graphics rendering upon the arrival of 3D data
Pros: reduce the rendering “start” time; bandwidth control
Cons: “fat” client; pre-processing to generate progressive models
Examples: [Schmalstieg 1997; Lluch et al. 2005]

Simplified
Model

Server: transmit simplified 3D models to client
Client: perform 3D graphics rendering on the simplified models received
Pros: reduce bandwidth usage; reduce rendering workloads on client
Cons: rendering quality loss due to model simplification; pre-processing to
generate simplified models
Examples: [Duguet and Drettakis 2004; Li et al. 2011]

Model +
Image

Server: transmit reformed (usually simplified) 3D models and the difference image
to client
Client: perform 3D graphics rendering and apply the difference image
Pros: maintain rendering quality with low bandwidth and lightweight computation
on client
Cons: pre-processing to generate simplified models and render both original and
simplified models for the difference image
Examples: [Levoy 1995; Mann and Cohen-Or 1997]

Image

Server: perform 3D graphics rendering, transmit result images to client
Client: display the images received
Pros: high rendering quality; low bandwidth usage; no rendering workloads on
client; source secure
Cons: interaction latency
Examples: [Commander 2007; Huang et al. 2013]

Environment
Map

Server: perform 3D graphics rendering of the whole environment, generate an
environment map (i.e., panorama), and transmit the environment map to client
Client: project the received environment map to the correct viewpoint
Pros: pros of Image; no latency for some types of user interaction (e.g., pan, tilt)
Cons: extra workloads on server to generate environment maps; interaction latency
for other unsupported user interactions
Examples: [Chen 1995; Boukerche and Pazzi 2006]

Image +
Depth

Server: perform 3D graphics rendering one or multiple times, extract depth maps
together with result images, and send all result images and depth maps to client
Client: display the result images received; if necessary, run IBR algorithms to
synthesize images at new viewpoints
Pros: pros of Image; reduce latency for most user interactions that only change
rendering viewpoint
Cons: extra workloads on server to generate multiple depth images; extra
bandwidth needed to transmit all depth images; IBR artifacts; interaction latency
for other unsupported user interactions
Examples: [Chang and Ger 2002; Shi et al. 2012a]

mitted. It also indicates that the server performs all rendering computation, while the
client only displays the received images. Interested readers are referred to Figure 6
and Table I for complete information on our classification.

3. CASE STUDY: CLOUD GAMING

In this section, we take OnLive as an example to explain in detail the key research
problems of the remote rendering mentioned at the beginning of this article. We choose
OnLive as our study case because the performance standard for cloud gaming is much
higher than it is for any of the other remote rendering applications reviewed in Section

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

A Survey of Interactive Remote Rendering Systems 1:11

Model Based Image Based

Original
Model

Simplified
Model

Progressive
Model

Image

Environment
Map

Image+Depth

Network Bandwidth
Computation on Client

more less

Model+Image

Fig. 6. Remote rendering classification

2. A cloud gaming system renders dynamic gaming contents at a high frame rate (e.g.,
30 fps or more) and responds to all types of user interactions in real time. Such a sys-
tem can easily serve other applications that are more tolerant to latency or refresh at a
lower rate. For example, OnLive provides the service of rendering desktop applications
to business customers using the same cloud gaming system.

OnLive is a proprietary cloud gaming system. Some technical system details are
revealed in [Perlman et al. 2010] and the system performance has been measured and
studied in [Claypool et al. 2012; Chen et al. 2014]. OnLive renders 3D games on a cloud
server, extracts game scene images from the frame buffer, compresses the images with
a customized video encoder, and streams the video to a game client through broad-
band networks. The game client simply receives, decodes, and displays the game video.
Meanwhile, it collects user input signals (e.g., the events of mouse, keyboard, or game
controller) and forwards them to the rendering server. Currently, the game client runs
on PC, Mac, set-top box, or even mobile devices (e.g., iPad or Android tablets). Using
such a rendering service, gamers can enjoy the most advanced video games without
buying expensive game consoles. OnLive is highly optimized for satisfactory gaming
experiences. However, it still struggles with two key problems: interaction latency and
data transmission.

Source 3D
Contents

DisplayNetwork

User interaction

Server performs
new rendering

Encoded
rendering result

T
im
e

Encoding

Rendering

Post processing

Decoding

Received
frame

Display

tup

tdown

trender

tencode

ttrans

tdecode

tpost_proc

Interaction
Latency

Fig. 7. Illustration of interaction latency

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:12 S. Shi and C. Hsu

Interaction Latency. We first take a close look at the components of interaction latency.
Figure 7 shows an illustration of the interaction latency of a video streaming-based
remote rendering system. The overall interaction latency is comprised of the server
processing time (trender + tencode), the client processing time (tdecode + tpost proc), the
propagation delay (tup + tdown), and the transmission delay (ttrans).

OnLive sets the target of interaction latency to be less than 80 ms, so as not to
affect user experience even in motion intensive games [Beigbeder et al. 2004]. Their
approach was to set strict requirements for networking. Users must have a broadband
wired network connection to use OnLive services, which helps to control both prop-
agation delay and transmission delay. Meanwhile, OnLive tries to save every single
millisecond by optimizing every component of the system. Figure 8 elaborates the la-
tency quota for each component in the interaction loop. In order to achieve this goal,
OnLive has made special efforts not only on its own software, but also on its hardware
and networking. For example, OnLive has tried to deploy cloud servers physically close
to users because every 1000 mile of physical distance adds 25 ms round trip delay to
the overall interaction latency [Perlman et al. 2010].

Server
Video

Compressor

Routing

WAN
Interface

Internet

CentralO
ffice,

Headend
Ceil

Tower,
etc

WAN
Interface

Firewall/
Router/NAT

Client
Input

Device

Monitor
or HDTV

•Ethernet

•WiFi

•Powerline

•UWB

User Premises

•Cable/DSL Modem

•WiMAX Transceiver

•Fiber Transceiver

•Cellular (e.g., 4G)

•Powerline Interface

Frame
Computation

~1-16ms

Video
Compression

~1-6ms

Server Center Routing
~1ms

Internet
~1-22ms

User ISP
~10-25ms

User Premise
Routing
~1ms

Video
Decompression

~1-8ms

Control
Signals
~1ms

Hosting Service

Fig. 8. Latency analysis of different system components in cloud gaming [Perlman et al. 2010]

Despite all of these efforts, OnLive is still unable to make any guarantees regard-
ing latency. The current approach relies considerably on the connection quality and
network condition. Due to the “best effort” nature of the Internet, latency can easily
fluctuate due to background network traffic. Unlike other video streaming services,
OnLive cannot buffer video frames for smooth playback because the buffer delay adds
to the overall interaction latency. Therefore, any large jitter or packet loss rate may
directly affect users’ gaming experience.

Data Transmission. OnLive suffers from the coding inefficiency of using a real-time
video encoder, i.e., to achieve the same video quality, OnLive consumes a higher band-
width than the latest codecs. The minimum requirement is to have at least 3 Mbps
broadband Internet connections to use the service. However, we have found that the
actual bandwidth usage is much higher. We played Unreal Tournament III: Titan Pack,

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

A Survey of Interactive Remote Rendering Systems 1:13

0 10 20 30 40 50 60
0
1
2
3
4
5
6
7
8
9

10

Time (s)

B
it

R
a
te

(M
b
p
s)

Downlink
Mean

(a)

0 1 2 3 4
0

10

20

30

40

Bit Rate (Mbps)

Q
u
a
li
ty

in
P
S
N
R

(d
B
)

(b)

0 1 2 3 4
0.5

0.6

0.7

0.8

0.9

1

Bit Rate (Mbps)

Q
u
a
li
ty

in
S
S
IM

(c)

Fig. 9. Sample results from a first-person shooting game: (a) OnLive streaming rate, (b) coding efficiency of
a general purpose video coder in PSNR, and (c) in SSIM

a first-person shooting game, for 60 seconds, and captured all downlink network pack-
ets. From the network trace, we plot the OnLive streaming rate in Figure 9(a), which
indicates that the real-time OnLive encoder produces a stream at a fairly high bit rate:
6.49 Mbps on average. As a comparison, we played a similar first-person shooting game
locally on our laptop and captured a 720p raw video, encoded the raw video at several
bit rates using x264 [Garrett-Glaser 2010] with typical coding parameters. We plot the
resulting Rate-Distortion (R-D) curves on Peak Signal-to-Noise Ratio (PSNR) [Wang
et al. 2001] and Structural SIMilarity (SSIM) [Wang et al. 2004] in Figures 9(b) and
9(c). These two figures show that x264 achieves almost perfect video quality, 40+ dB
(PSNR) and 0.93+ (SSIM) at merely 1.5 Mbps, which is much lower than that used on
OnLive. The experiment reveals that the state-of-the-art OnLive video encoder suffers
from suboptimal coding efficiency, which increases the burden of network streaming
and client processing. More details on these experiments can be found in [Shi et al.
2011a].

Moving to Mobile. Mobile gaming is playing an increasingly important role in the gam-
ing industry as computing becomes more ubiquitous. Applying cloud gaming to mobile
devices can readily boost the rendering quality of mobile games to the game console
level and significantly reduce the complexity of developing the same game for different
mobile devices.

However, applying the current cloud gaming system (e.g., OnLive) to mobile devices
will the latency issue even more challenging. Mobile devices connect to the Internet
through wireless connections like WiFi or mobile networks (e.g., 3G, 4G/LTE, etc.).
Unlike wired Internet connections, wireless connections suffer from longer network
delays. According to the experiments in [Huang et al. 2012], even the best technologies
take more than a 60-ms round trip propagation delay, which alone exceeds the quota
for all networking-related latency shown in Figure 8. This number does not count the
factors of mobility, signal strength, or interference that can easily make the connection
more fragile. Therefore, the current approach cannot be easily extended to wireless
users.

In summary, latency and bandwidth are two issues that are not yet perfectly solved
by the current remote rendering systems and will remain critical challenges for future
systems serving mobile clients. In the next two sections, we will dig deeper into these
two problems and survey proposed solutions.

4. LATENCY REDUCTION

With conventional optimization techniques, the overall interaction latency cannot
break the lower bound of the network round trip delay. However, there is a bypass.
It is possible to generate the visual response frames on the client before any server re-

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:14 S. Shi and C. Hsu

sponses are received. In this case, the perceived interaction latency for the user is only
the time it takes for the client to create a response frame (Figure 10). In this section,
we survey the latency reduction techniques that are less affected by network delay.

Source 3D
Contents

DisplayNetwork

User interaction

Server performs
new rendering

Encoded
rendering result

T
im
e

Encoding

Rendering

Post processing

Decoding

Received
frame

Server response

Server update  
latency

Post
processing

Display the
response frame
generated by client

Perceived
interaction
latency

Fig. 10. Illustration of interaction latency reduction

4.1. Local Rendering and Dead Reckoning

The easiest method to create a response frame locally is to store 3D data on the client
and perform 3D graphics rendering locally. Some VE walk-through [Lluch et al. 2005]
and remote visualization systems [Duguet and Drettakis 2004] that stream meshes
to the client can apply local rendering and reduce the interaction latency to the time
needed for 3D graphics rendering on each client device. The cloud gaming provider
Ciinow also claims that the integration of 3D graphics streaming [Dharmapurikar
2013b] actually reduces the latency6.

One key issue in this approach is to keep the local rendering synchronized with
the server. For visualization or walk-through applications, the server-client synchro-
nization may only need to keep the rendering viewpoint consistent. Synchronization
becomes more complicated for gaming applications because rendering game scenes
requires knowledge of the game logic and user data (e.g., the speed and direction of
moving objects).

Dead Reckoning, a strategy widely adopted in developing multi-player online games
[Pantel and Wolf 2002], can be applied to mitigate the synchronization problem. The
basic notion of dead reckoning is to agree in advance on a set of algorithms that can
be used by the client to extrapolate the behavior of entities in the game. There should
also be agreement on how far reality should be allowed to get from these extrapola-
tion algorithms before a correction is issued. In the scenario of remote rendering, the
correction can be issued with the server updates after approximately a network round
trip delay.

6http://www.ciinow.com/cloud-gaming-service-technology/

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

A Survey of Interactive Remote Rendering Systems 1:15

4.2. Pre-Fetch

For a system that cannot process 3D graphics rendering on the client side, pre-fetch
is an intuitive but effective latency reduction approach. A client (or server) predicts
a user’s future moves and requests the server to transmit the images rendered for
all possible moves. If the prediction hits, the client can simply display the pre-fetched
images and no latency is noticed. If the prediction fails, the client should flush the
pre-fetch buffer and wait for the correct images to arrive from the server.

Hesina and Schmalstieg [1998] introduced a pre-fetch framework for a networked
VE. Chen et al. [2008] discussed how to pre-fetch images of multiple resolutions to
cover different levels of detail. Boukerche and Pazzi [2006] is another example but the
pre-fetched images are panoramas which are sufficient to cover any pan/tilt move-
ments. Different motion prediction methods and pre-fetch protocols are introduced
in Chan et al. [2001] and Lazem et al. [2007]. Touch [1995] introduced a source-
driven pre-sending approach for general communications over high-speed networks.
Pre-sending helps to reduce the latency by half the time of a round trip delay when
bandwidth is not the bottleneck.

Pre-fetch works best for navigating within a static environment, the image of which
can be saved for future use without expiration. The performance of pre-fetch tech-
niques completely relies on the hit rate of motion prediction and the size of the pre-
fetch buffer. The cost is the extra network bandwidth needed to transmit all pre-
fetched scene images, most of which might never be used. Pre-fetch is inappropriate
for applications that render dynamic data, such as games. Such applications refresh
quickly and each frame expires upon the arrival of the next frame. Therefore, a client
needs to pre-fetch for every new frame, which significantly increases the network band-
width usage.

(a) (c)(b)

(d) (f)(e)

v1 v2 v3

Fig. 11. (a) The game scene image and corresponding depth map, while playing game BZFlag
(http://bzflag.org) at the current viewpoint v1 (the tank looks in the 12 o’ clock direction); (b) the game
scene at the target viewpoint v2 (the tank looks in the 1 o’ clock direction); (c) the game scene image and
corresponding depth map at the reference viewpoint v3 (the tank looks in the 2 o’ clock direction); (d) 3D
image warping result of warping (a) to viewpoint v2; (e) 3D image warping result of warping (c) to viewpoint
v2; (f) compose (d) and (e) [Shi et al. 2012a]

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:16 S. Shi and C. Hsu

4.3. Image-Based Rendering

Image-based rendering falls between the 3D approach (local rendering) and the image
approach (pre-fetch). It requires the server to send extra information with the render-
ing result images to the client. On the client side, when the user interaction changes
the rendering viewpoint, the extra information can be used to run IBR algorithms to
synthesize the display image at the new viewpoint. Therefore, the interaction latency
is reduced to the time required to run IBR algorithms.

A well-known IBR algorithm is 3D image warping [McMillan 1997]. It takes a depth
image, the viewpoint corresponding to the depth image, and the target viewpoint as
inputs, and outputs the image at the target viewpoint (Figure 11). This algorithm can
be efficiently executed on embedded CPUs/GPUs [Yoo et al. 2010] or on customized
hardware [Popescu et al. 2000]. 3D image warping has been applied in several remote
rendering systems [Chang and Ger 2002; Shi et al. 2012a; Mark 1999; Bao and Gourlay
2004]. For every frame, the server needs to send a depth map with a result image to
the client and the interaction latency for any viewpoint change can be reduced to the
time required to run 3D image warping on the client device.

However, using 3D image warping creates the problem of exposure. The synthesis re-
sult image usually has hole artifacts because there are insufficient pixels in the input
image to fill the surface at a new viewpoint. Various techniques have been proposed
to fill warping holes. Depth filters [Redert et al. 2002] and splat warping [Mark 1999]
are effective for small holes. Super view warping [Bao and Gourlay 2004] and wide
field-of-view warping [Mark 1999] can partially solve the occlusion problem. View com-
pensation [Bao and Gourlay 2004] requires a server to generate the difference image
between the warping result and the actual rendering result. LDI [Shade et al. 1998]
and Double Warping [Shi et al. 2009; Shi et al. 2010] are both based on the idea of
using multiple references to cover exposed holes.

Of all the techniques listed above, Double Warping is probably the most appropriate
technique to reduce interaction latency in remote rendering systems. With this ap-
proach, a server renders not only the depth image at the current viewpoint, but mul-
tiple depth images at other reference viewpoints. The client runs 3D image warping
algorithm for all received depth images and composes all the results. The reference
viewpoints are carefully selected based on a prediction of camera movement [Mark
1999; Shi et al. 2010]. Note that the prediction here is slightly different from the mo-
tion prediction for pre-fetch. It does not need to give the accurate position of the future
viewpoint, but only a possible direction/area. With the predicted direction/area of mo-
tion, references should be selected to cover that area so that a high-quality hole-free
image can be synthesized by the client (Figure 11). Different reference selection al-
gorithms have been studied in [Mark 1999; Shi et al. 2009; Shi et al. 2012a; Hudson
and Mark 1999; Thomas et al. 2005]. Double Warping actually converts the network-
dependent latency reduction problem to a content-based reference selection problem.

4.4. Summary

We have discussed three types of techniques that can successfully mitigate the influ-
ence of network delay on interaction latency. The pros and cons of each of these tech-
niques are summarized in Table II. In practice, all three techniques can be combined
in one system to achieve the best result. For example, in the scenario of cloud gaming,
we can pre-fetch the panoramic image of the surrounding background environment,
use 3D image warping algorithms to render moving foreground objects, and download
3D data on the client side to handle other user interactions like firing a weapon.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

A Survey of Interactive Remote Rendering Systems 1:17

Table II. Summary of latency reduction techniques

Approach Description

Local
Rendering

Pros: works for any user interactions
Cons: requires 3D graphics rendering on the client side
Best for: lightweight rendering tasks, animations, non-viewpoint-changing actions

Pre-Fetch

Pros: simple image-based approach; no rendering computation on the client side
Cons: works only for static scenes and discrete viewpoint-changing actions;
relies on accurate motion prediction
Best for: static background environment navigation

Image-Based
Rendering

Pros: works for both static and dynamic scenes; image-based approach; lightweight
computation workloads on the client side
Cons: Works only for viewpoint-changing actions; hole artifacts
Best for: foreground moving objects

5. DATA TRANSMISSION

We mainly focus on the data transmission module of remote rendering systems, and
we classify all the studies in the literature into three groups. We first present the
data compression techniques that are suitable for remote rendering systems. This is
followed by the data streaming protocol and strategies that deliver the encoded data
streams to clients. Finally, we present the latest work on QoS/QoE evaluations for
remote rendering systems. The data transmission module has to satisfy stringent real-
time constraints, and thus imposes a direct effect on the overall system performance.

5.1. Data Compression

In remote rendering systems, the data transferred between the server and client are
compressed using various algorithms in order to reduce the network loads. We present
the tools for common data compression, depth image compression, and joint coding.

Common Tools. There are many tools that can be used for compressing images, videos,
and graphics, including lossless compression, lossy image/video compression, real-time
video encoding, compound image encoding, and graphics encoding. We detail each of
these common tools in the following paragraphs.

The lossless compression tools, such as LZO [Oberhumer 1996], BZIP [Seward 1996],
and [Weinberger et al. 1996], harvest the repetitions in raw data for encoded data at a
reduced bit rate. Uncompressing these encoded data results in perfect reconstruction
identical to the input raw data. The lossless compression tools are general-purpose
and can be used to compress texts, executables, binaries, audio, images and graphics.
These lossless compression tools were used by the servers in early remote rendering
systems [Ma and Camp 2000; Hege et al. 2000; Levoy 1995] to compress the rendered
images before transferring them to the client.

Compared to the lossless compression tools, the lossy image compression tools drop
the details that are unnoticeable to the human eye to further reduce bit rates. There
are several early attempts to use lossy image compression tools for leveraging char-
acteristics of human visual systems [Ikonomopoulos and Kunt 1985; Kunt et al. 1987;
Egger et al. 1995; Campbell et al. 1986; Marcellin et al. 2000; Skodras et al. 2001;
Du and Fowler 2007]. Although the lossy image compression tools may be used to
compress videos as well, they cannot leverage the redundancy across multiple frames.
The hybrid video coders [Wang et al. 2001] integrate lossy image compression tools
with motion-compensation tools to exploit the temporal redundancy. The hybrid video
coders have been standardized as, e.g., MPEG-4 [Schafer 1998] and H.264/AVC [Wie-
gand et al. 2003], which (or their variations) are used by several modern remote ren-
dering systems [Noimark and Cohen-Or 2003; Lamberti and Sanna 2007; Jurgelionis
et al. 2009; De Winter et al. 2006; Perlman et al. 2010; Shi et al. 2011a; Herzog et al.
2008; Huang et al. 2013]. The video coding tools proposed in [Tran et al. 1998; Bayazit

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:18 S. Shi and C. Hsu

1999; Liu et al. 2007] adopted some or all of the real-time coding constraints discussed
in [Reddy and Chunduri 2006; Schreier et al. 2006]. When extremely low coding de-
lay, in the order of nanoseconds, is required, intra-frame video coders [Lee and Song
2008; Nadeem et al. 2010], which essentially compress individual video frames inde-
pendently, can be used at the expense of significantly lower coding efficiency.

Compound image coding tools target compressing computer desktops consisting of
less motions, but a combination of texts, graphics, and natural images. Shape Prim-
itive Extraction and Coding (SPEC) [Lin and Hao 2005] segments each image into
texts/graphics and natural image regions, and encodes the texts/graphics regions us-
ing a lossless compression algorithm, and the natural regions using JPEG. A similar
idea was proposed by Maheswari and Radha in [2010]. Wang and Lin [2009] proposed
to concurrently compress each macroblock using H.264 [Wiegand et al. 2003] and gzip
[Gailly 1992], and choose the better compressed macroblock in the rate-distortion fash-
ion; they later proposed a generalized system called United Coding (UC) [Wang and
Lin 2012] based on multiple lossless coders, such as Run-Length Coding (RLE), gzip,
and Portable Network Graphics (PNG). Two new H.264 intra modes were proposed in
[Lan et al. 2010] to better exploit spatial redundancy in compound images. The first
mode directly quantizes and entropy-codes the intra-predicted residues and the second
mode uses adaptive vector quantization. Han et al. [2010] extended H.264 [Wiegand
et al. 2003] by adding a preprocessor, an adaptive quantization algorithm, and a rate
control algorithm.

Graphics coding tools are used to compress geometric graphics data, e.g., polygonal
meshes, point clouds, and volume data. Compressing polygonal meshes was consid-
ered in an early geometry compression study [Deering 1995], which generated a linear
stream of polygonal meshes before applying Huffman, delta, and VLC coding. In [Li
and Kuo 1998], the polygonal meshes were represented by topological and geometrical
data, and different coding tools were applied to them. Local compression of polygo-
nal meshes was proposed for low-complexity mesh compression algorithms [Gumhold
and StraBer 1998]. A spectral compression method projects polygonal meshes onto an
orthonormal basis for progressive mesh streaming [Karni and Gotsman 2000]. The
multi-resolution 3D Discrete Wavelet Transform (DWT) analysis was used for low bit-
rate polygonal mesh compression [Payan and Antonini 2002]. CODDYAC [Vasa and
Skala 2007] studied the mesh compression problem from both spatial and temporal
domains. The error resilience problem of polygonal mesh streaming was investigated
in [Park et al. 2006]. The geometry compression algorithms for non-polygonal meshes
were studied in [Gumhold et al. 1999]. The compression algorithms for normal maps
were considered in [Shi et al. 2012b]. Many more mesh compression algorithms are
proposed in the literature. Interested readers are referred to a survey [Peng et al.
2005].

Depth Compression. Depth images play an important role in image-based rendering.
The compression of depth images has been well studied in the literature. For exam-
ple, regions-of-interest and dynamic range adjustments were considered in [Krish-
namurthy et al. 2001]. Surface shape prediction was used to compress some regions
[Zanuttigh and Cortelazzo 2009]. LDI (Layered Depth Image) has been employed in
some remote rendering systems [Chang and Ger 2002], which can be compressed by
the algorithms introduced in [Duan and Li 2003; Cheng et al. 2007]. Other depth com-
pression algorithms include [Sarkis and Diepold 2009; Penta and Narayanan 2005;
Kum and Mayer-Patel 2005; Yang et al. 2006; Chai et al. 2002]. Studies [Milani and
Calvagno 2010; Shi et al. 2011a; Oh and Ho 2006; Morvan et al. 2007] showed that the
modified H.264 [Wiegand et al. 2003] encoders can efficiently encode depth images.
For example, Oh and Ho [2006] computed candidate motion modes by utilizing texture

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

A Survey of Interactive Remote Rendering Systems 1:19

videos’ motion information for shorter encoding time yet higher coding efficiency. Mor-
van et al. [2007] concurrently employed block-based and 3D warping prediction modes.
The rendering qualities of different depth image compression algorithms were given in
Merkle et al. [2009]. Interested readers are referred to a survey of depth compression
algorithms [Shum et al. 2003].

Jointly Encoding. In a remote rendering system, the encoder usually runs on the same
server as the rendering engine. Researchers have found that better coding performance
can be achieved by jointly encoding the rendered images with the metadata extracted
from the rendering engine. Noimark and Cohen-Or [2003] used graphics information
to segment the background and foreground, applied different quantization parame-
ters, detected scene cuts using motion information, and analyzed the optical flow to
speed up motion estimation. All these steps help boost the performance of MPEG-4
encoding. Pajak et al. [2011] proposed compressing low-resolution depth images using
H.264 [Wiegand et al. 2003] and streaming the H.264 videos along with augmentation
information such as edges and motions. Upon receipt, the depth images are upscaled
to their original resolution with the assistance of edges and motions. Shi et al. [2011a]
retrieved the run-time graphics rendering contexts, including rendering viewpoints,
depth images, and camera movements, from the 3D game engine. These contexts can
be used to increase the compression ratio of cloud gaming video streams.

5.2. Data Streaming

For data streaming, we survey the streaming protocols and several streaming strate-
gies.

Protocols. Several network protocols have been proposed to stream compressed videos
over the Internet. For example, GLX [Phil Karlton 2005] was designed as an extended
X11 protocol for streaming 3D rendering operations, and NX [BerliOS 2008] was pro-
posed to improve the remote rendering efficiency of X11/GLX. Compression, caching,
and round trip time suppression are included in the NX protocol to boost the overall
speed of streaming XLib and OpenGL operations. Remote Frame Buffer (RFB) is an
open network protocol used by VNC systems [Richardson et al. 1998] to stream frame
buffer updates. THiNC, introduced in [Baratto et al. 2005], is another protocol that
streams low-level drawing operations. Figure 12 compares the difference among these
four protocols.

The network protocols proposed for video streaming [Li et al. 2013], such as RTP and
DASH, may also be used in remote rendering systems. 3TP for graphics [AlRegib and
Altunbasak 2005] is a network protocol for streaming 3D models over lossy channels
on top of both TCP and UDP. 3TP combines source and channel characteristics to
minimize end-to-end delay.

Progressive Streaming. Progressive streaming transmits lower-quality graph-
ics/texture data, which are followed by refinements. Hoppe [1996] first proposed
constructing progressive meshes. Rusinkiewicz et al. [2000; 2001] introduced QSplat
to progressively divide large-scale dense graphic models for networked visualization.
The cases where the geometry models are simple but the texture maps are complex
have also been studied in [Cohen-Or et al. 1999] and [Marvie and Bouatouch 2003],
in which the texture maps are organized based on user viewpoint for progressive
transmission. [Yu et al. 2004; Tu et al. 2006] proposed using parallel Oct-trees to
manage very large scale (in the range of tera-scale) unstructured meshes. This
type of structure allows the rendering processor to process data blocks at different
resolutions. While progressive streaming allows remote rendering systems to utilize

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:20 S. Shi and C. Hsu

Fig. 12. Thin client and remote rendering [De Winter et al. 2006]

available bandwidth for higher data transmission quality, it does not actively change
the data representations.

Adaptive Streaming. Adaptive streaming dynamically adjusts the data representations
at the remote rendering server based on the current network conditions. Schneider and
Martin [1999; 2000] proposed a performance model to evaluate client-server remote
rendering systems. Their model selects a remote rendering approach based on three
components: transmission time, quality, and interactivity. Pasman and Jansen [2003]
developed a similar model for a client-server image-based rendering system to deter-
mine which graphical representation and graphics simplification technique should be
used. Wang and Dey [Wang and Dey 2012] proposed an adaptive streaming approach
that jointly changes rendering the encoding parameters to adapt to the network condi-
tions for mobile cloud gaming. Ciinow [Dharmapurikar 2013a] proposed several band-
width adaption schemes for different types of data. For cases in which large scale data
is visualized, adaptive streaming should also consider the storage space available on
the hard disk as well as network bandwidth [Malakar et al. 2010].

5.3. QoS/QoE Evaluation

The design space of data compression and data streaming in remote rendering sys-
tems is large. Therefore, the QoS and QoE measurement techniques for remote ren-
dering systems are important for system evaluation. We survey a few representa-
tive measurement techniques below and discuss how they can be extended to better
suit remote rendering systems in Section 6. Readers who are interested in more data
streaming QoS/QoE measurement techniques are referred to [Chikkerur et al. 2011].
Serral-Gracia et al. [2010] surveyed the QoE measurement of video streaming sys-
tems. Stegmaier et al. [2003] discussed in depth how QoS parameters affect remote
visualization. Pravati et al. [2011] studied the QoS and QoE measurements and perfor-
mance monitoring for rendering VE remotely on mobile devices. Wang and Dey [2009]
proposed a QoE model for mobile cloud gaming, which takes the game type, resolu-
tion, frame rate, video quality, delay, and packet loss into consideration, and their QoE
measurement techniques were presented in Wang and Dey [2012]. VQ (Video Quality)
[Nieh et al. 2003] is another metric to measure the actual video streaming perfor-
mance of a thin-client system. Owing to the frame rate requirement of video playback,
the system may actively drop video frames if they arrive late. Therefore, a slow motion
benchmark that has a much lower frame rate requirement is applied to make sure that

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

A Survey of Interactive Remote Rendering Systems 1:21

no frame is dropped by the testing system. VQ was also borrowed in the image-based
remote rendering systems [De Winter et al. 2006].

6. DISCUSSIONS

With the explosion of mobile devices and cloud computing, we truly believe the inte-
gration of these technologies will not only be limited to data sharing, but it will extend
to distributed computation. Although mobile devices have more powerful, the abun-
dance and flexibility of cloud resources still offer several incentives for mobile devices
to the resources, including CPU (processing), GPU (rendering), energy, storage, and
security [Abolfazli et al. 2014]. Therefore, we expect to see more seamless integration
between mobile devices and cloud servers in computation-intensive tasks, and remote
rendering will be an important part of this evolution. In this section, we want to share
our vision of the future research directions on remote rendering.

Mobile Cloud Gaming. According to [Dinh et al. 2011], mobile cloud gaming is a major
application of mobile cloud computing. We have already discussed the problems and
difficulties of applying the current cloud gaming systems directly to mobile platforms
in Section 3. New approaches are demanded to stream video games efficiently to mobile
devices within strictly enforced latency restrictions.

After surveying all remote rendering related techniques, we believe the ideal mobile
cloud gaming system should divide the rendering tasks based on rendering complexity
and latency sensitivity, and process them differently. The tasks that are less sensitive
to latency can be rendered on the server using an image-based approach. For the tasks
that are sensitive to latency but easier to render, the 3D models can be streamed to
the client to render locally. Only the tasks that are both sensitive to latency and com-
plicated to render need to be treated specially. To be specific, we can choose to either
generate a simplified 3D representation, or use IBR techniques for approximation, so
that the rendering computation on the client can be managed with the available hard-
ware resources. Finally, the image layers from different tasks are composed for the
final display [Torborg and Kajiya 1996].

Remote Rendering Model, Library, and Service. Building a cloud gaming system alone may
not solve all latency and bandwidth problems completely. This is because video games
are designed to be rendered locally and game developers have no notion of large in-
teraction latency in mind. In the long run, the success of cloud gaming relies on the
adoption of the remote rendering model. Game developers should consider the network
distributed architecture from the beginning stages of the development of new games.
The concepts of two computers remotely connected by a delayed link, image streaming,
graphics streaming, data synchronization, etc., should be integrated with the design of
the game engine. At the same time, it is also necessary to encapsulate all the details
of data compression, streaming protocols, IBR algorithms, etc., into, say, an Open Re-
mote Graphics Library (similar to OpenGL), so that the developers can focus on game
content. Another interesting topic is the provision of rendering as a cloud service so
that any application with rendering requests can benefit from cloud computing.

Quantitative Performance Evaluations. Another interesting and important research topic
involves defining a quantitative performance evaluation metric for remote rendering
systems. Existing attempts [Wang and Dey 2009; 2012] studied the QoE model to eval-
uate the performance of remote rendering, but a quantitative metric like PSNR [Wang
et al. 2001] or SSIM [Wang et al. 2004] that can be effectively calculated at run-time
will be even more useful to help the rendering server to adjust encoding and streaming
parameters for varying network conditions. For example, Shi et al. [2011b] proposed
DOL (Distortion Over Latency) to evaluate the interactive performance of remote ren-

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:22 S. Shi and C. Hsu

dering systems. DOL is defined to combine both interaction latency and rendering
quality into one score to measure the interactive performance. However, the metric
can be improved by integrating more components and validated with both extensive
objective and subjective tests.

7. CONCLUSION

In this article, we have provided background knowledge on remote rendering systems,
surveyed the existing remote rendering designs from different perspectives, summa-
rized the technologies that are applied to build key components of a real system, and
discussed the possible directions of future research. From the survey, we observe that
the state-of-the-art remote rendering designs are usually customized to meet the re-
quirements of specific applications. The direction of building a more general and scal-
able remote rendering system demands new frameworks, algorithms, and program-
ming models that can guide developers in designing better distributed applications.

REFERENCES

ABOLFAZLI, S., SANAEI, Z., AHMED, E., GANI, A., AND BUYYA, R. 2014. Cloud-based augmentation
for mobile devices: Motivation, taxonomies, and open challenges. Communications Surveys Tutorials,
IEEE 16, 1, 337–368.

ALREGIB, G. AND ALTUNBASAK, Y. 2005. 3tp: An application-layer protocol for streaming 3-d models. Mul-
timedia, IEEE Transactions on 7, 6, 1149–1156.

APPLE. 2009. Cgl reference. http://developer.apple.com/library/mac/documentation/Graphics Imag-
ing/Reference/CGL OpenGL/CGL OpenGL.pdf.

BAO, P. AND GOURLAY, D. 2004. Remote walkthrough over mobile networks using 3-d image warping and
streaming. Vision, Image and Signal Processing, IEE Proceedings - 151, 4, 329 – 336.

BARATTO, R. A., KIM, L. N., AND NIEH, J. 2005. Thinc: a virtual display architecture for thin-client com-
puting. In Proceedings of the twentieth ACM symposium on Operating systems principles. SOSP ’05.
ACM, New York, NY, USA, 277–290.

BAYAZIT, U. 1999. Macroblock data classification and nonlinear bit count estimation for low delay H.263
rate control. In Proc. of IEEE International Conference on Image Processing (ICIP’99). Kobe, Japan,
263–267.

BEERMANN, D. AND HUMPHREYS, G. 2003. Visual computing in the future: Computer graphics as a remote
service. University of Virginia, Computer Science Department, University of Virginia Technical Report
CS-2003-16 25.

BEIGBEDER, T., COUGHLAN, R., LUSHER, C., PLUNKETT, J., AGU, E., AND CLAYPOOL, M. 2004. The effects
of loss and latency on user performance in unreal tournament 2003. In Proc. of NetGames’04. Portland,
OR, 144–151.

BERLIOS. 2008. Freenx - nx components. http://openfacts2.berlios.de/wikien/index.php/Berlios
Project:FreeNX - NX Components.

BETHEL, W. 2000. Visapult: A prototype remote and distributed visualization application and framework.

BHANIRAMKA, P., ROBERT, P., AND EILEMANN, S. 2005. Opengl multipipe sdk: a toolkit for scalable parallel
rendering. In Visualization, 2005. VIS 05. IEEE. 119–126.

BOUKERCHE, A. AND PAZZI, R. W. N. 2006. Remote rendering and streaming of progressive panoramas
for mobile devices. In Proceedings of the 14th annual ACM international conference on Multimedia.
MULTIMEDIA ’06. ACM, New York, NY, USA, 691–694.

CAMPBELL, G., DEFANTI, T. A., FREDERIKSEN, J., JOYCE, S. A., AND LESKE, L. A. 1986. Two bit/pixel
full color encoding. SIGGRAPH Comput. Graph. 20, 215–223.

CEDILNIK, A., GEVECI, B., MORELAND, K., AHRENS, J., AND FAVRE, J. 2006. Remote large data visualiza-
tion in the Paraview framework. In Proceedings of the 6th Eurographics Conference on Parallel Graphics
and Visualization. EG PGV’06. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 163–
170.

CHAI, B.-B., SETHURAMAN, S., AND SAWHNEY, H. 2002. A depth map representation for real-time trans-
mission and view-based rendering of a dynamic 3d scene. In 3D Data Processing Visualization and
Transmission, 2002. Proceedings. First International Symposium on. 107 – 114.

CHAN, A., LAU, R. W. H., AND NG, B. 2001. A hybrid motion prediction method for caching and prefetching
in distributed virtual environments. In VRST. 135–142.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

A Survey of Interactive Remote Rendering Systems 1:23

CHANG, C.-F. AND GER, S.-H. 2002. Enhancing 3d graphics on mobile devices by image-based rendering.
In Proceedings of the Third IEEE Pacific Rim Conference on Multimedia: Advances in Multimedia In-
formation Processing. PCM ’02. Springer-Verlag, London, UK, 1105–1111.

CHEN, J., YOON, I., AND BETHEL, W. 2008. Interactive, internet delivery of visualization via structured
prerendered multiresolution imagery. IEEE Trans. Vis. Comput. Graph. 14, 2, 302–312.

CHEN, K.-T., CHANG, Y.-C., HSU, H.-J., CHEN, D.-Y., HUANG, C.-Y., AND HSU, C.-H. 2014. On the quality
of service of cloud gaming systems. IEEE Transactions on Multimedia 16, 2, 480–495.

CHEN, S. E. 1995. Quicktime vr: an image-based approach to virtual environment navigation. In Proceed-
ings of the 22nd annual conference on Computer graphics and interactive techniques. SIGGRAPH ’95.
ACM, New York, NY, USA, 29–38.

CHENG, X., SUN, L., AND YANG, S. 2007. A multi-view video coding approach using layered depth image.
In IEEE 9th Workshop on Multimedia Signal Processing (MMSP’07). Chania, Crete, Greece, 143–146.

CHIKKERUR, S., SUNDARAM, V., REISSLEIN, M., AND KARAM, L. 2011. Objective video quality assess-
ment methods: A classification, review, and performance comparison. Broadcasting, IEEE Transactions
on 57, 2, 165–182.

CLAYPOOL, M., FINKEL, D., GRANT, A., AND SOLANO, M. 2012. Thin to win? network performance analysis
of the OnLive thin client game system. In ACM Workshop on Network and Systems Support for Games
(NetGames). 1–6.

COHEN-OR, D., CHRYSANTHOU, Y. L., SILVA, C. T., AND DURAND, F. 2003. A survey of visibility for walk-
through applications. Visualization and Computer Graphics, IEEE Transactions on 9, 3, 412–431.

COHEN-OR, D., MANN, Y., AND FLEISHMAN, S. 1999. Deep compression for streaming texture intensive an-
imations. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques.
ACM Press/Addison-Wesley Publishing Co., 261–267.

COMMANDER, D. R. 2007. Virtualgl: 3d without boundaries the virtualgl project. http://www.virtualgl.org/.

CUMBERLAND, B. C., CARIUS, G., AND MUIR, A. 1999. Microsoft windows nt server 4.0 terminal server
edition technical reference. Microsoft Press.

D’AMORA, B. AND BERNARDINI, F. 2003. Pervasive 3d viewing for product data management. IEEE Com-
put. Graph. Appl. 23, 14–19.

DE FLORIANI, L. AND MAGILLO, P. 2002. Multiresolution mesh representation: Models and data structures.
Tutorials on Multiresolution in Geometric Modelling, 363–418.

DE WINTER, D., SIMOENS, P., DEBOOSERE, L., DE TURCK, F., MOREAU, J., DHOEDT, B., AND DE-
MEESTER, P. 2006. A hybrid thin-client protocol for multimedia streaming and interactive gaming ap-
plications. In Proceedings of the 2006 international workshop on Network and operating systems support
for digital audio and video. NOSSDAV ’06. ACM, New York, NY, USA, 15:1–15:6.

DEERING, M. 1995. Geometry compression. In Proc. of the 22nd Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRATH’95). Los Angeles, CA, 13–20.

DEFANTI, T., ACEVEDO, D., AINSWORTH, R., BROWN, M., CUTCHIN, S., DAWE, G., DOERR, K.-U., JOHN-
SON, A., KNOX, C., KOOIMA, R., KUESTER, F., LEIGH, J., LONG, L., OTTO, P., PETROVIC, V., PONTO,
K., PRUDHOMME, A., RAO, R., RENAMBOT, L., SANDIN, D., SCHULZE, J., SMARR, L., SRINIVASAN,
M., WEBER, P., AND WICKHAM, G. 2011. The future of the CAVE. Central European Journal of Engi-
neering 1, 1, 16–37.

DHARMAPURIKAR, M. 2013a. Method and mechanism for efficiently delivering visual data across a network.
US Patent App. 13/558,163.

DHARMAPURIKAR, M. 2013b. Method and mechanism for performing both server-side and client-side ren-
dering of visual data. US Patent App. 13/349,422.

DIEPSTRATEN, J., GORKE, M., AND ERTL, T. 2004. Remote line rendering for mobile devices. In Computer
Graphics International, 2004. Proceedings. IEEE, 454–461.

DINH, H. T., LEE, C., NIYATO, D., AND WANG, P. 2011. A survey of mobile cloud computing: architecture,
applications, and approaches. Wireless communications and mobile computing.

DU, Q. AND FOWLER, J. 2007. Hyperspectral image compression using JPEG2000 and principal component
analysis. IEEE Geoscience and Remote Sensing Letters 4, 2, 201–205.

DUAN, J. AND LI, J. 2003. Compression of the layered depth image. IEEE Transactions on Image Process-
ing 12, 3, 365–372.

DUGUET, F. AND DRETTAKIS, G. 2004. Flexible point-based rendering on mobile devices. IEEE Comput.
Graph. Appl. 24, 57–63.

EGGER, O., LI, W., AND KUNT, M. 1995. High compression image coding using an adaptive morphological
subband decomposition. IEEE 83, 2, 272–287.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:24 S. Shi and C. Hsu

EILEMANN, S., MAKHINYA, M., AND PAJAROLA, R. 2009. Equalizer: A scalable parallel rendering frame-
work. IEEE Transactions on Visualization and Computer Graphics 15, 3, 436–452.

EISERT, P. AND FECHTELER, P. 2008. Low delay streaming of computer graphics. In Image Processing, 2008.
ICIP 2008. 15th IEEE International Conference on. 2704 –2707.

ENGEL, K., ERTL, T., HASTREITER, P., TOMANDL, B., AND EBERHARDT, K. 2000. Combining local and re-
mote visualization techniques for interactive volume rendering in medical applications. In Proceedings
of the conference on Visualization ’00. VIS ’00. IEEE Computer Society Press, Los Alamitos, CA, USA,
449–452.

FUNKHOUSER, T. A. 1995. Ring: a client-server system for multi-user virtual environments. In Proceedings
of the 1995 symposium on Interactive 3D graphics. I3D ’95. ACM, New York, NY, USA, 85–ff.

GAILLY, J. 1992. The gzip home page. http://www.gzip.org.

GARRETT-GLASER, J. 2010. x264: The best low-latency video streaming platform in the world.
http://x264dev.multimedia.cx/archives/249.

GUMHOLD, S., GUTHE, S., AND STRABER, W. 1999. Tetrahedral mesh compression with the cut-border
machine. In Proc. of the Conference on Visualization (VIS’99). San Francisco, California, 51–58.

GUMHOLD, S. AND STRABER, W. 1998. Real time compression of triangle mesh connectivity. In Proc. of the
25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRATH’98). Orlando,
FL, 133–140.

HAN, B., WU, D., AND ZHANG, H. 2010. Block-based method for real-time compound video compression. In
Proc. of the SPIE Security and Applications of Mobile Multimedia/Image Processing. Orlando, Florida.

HEGE, H.-C., MERZKY, A., AND ZACHOW, S. 2000. Distributed visualization with opengl vizserver: Practical
experiences. Tech. Rep. 00-31, ZIB, Takustr.7, 14195 Berlin.

HERZOG, R., KINUWAKI, S., MYSZKOWSKI, K., AND SEIDEL, H. 2008. Render2mpeg: A perception-based
framework towards integrating rendering and video compression. In Computer Graphics Forum. Vol. 27.
Wiley Online Library, 183–192.

HESINA, G. AND SCHMALSTIEG, D. 1998. A network architecture for remote rendering. In DIS-RT. IEEE
Computer Society, 88–91.

HOPPE, H. 1996. Progressive meshes. In Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques. SIGGRAPH ’96. ACM, New York, NY, USA, 99–108.

HP. 2006. Remote graphics software. http://h20331.www2.hp.com/hpsub/cache/286504-0-0-225-121.html.

HUANG, C., HSU, C., CHANG, Y., AND CHEN, K. 2013. GamingAnywhere: An open cloud gaming system. In
Proc. of the ACM Multimedia Systems Conference (MMSys’13). Oslo, Norway.

HUANG, J., QIAN, F., GERBER, A., MAO, Z. M., SEN, S., AND SPATSCHECK, O. 2012. A close examination
of performance and power characteristics of 4g lte networks. In Proceedings of the 10th international
conference on Mobile systems, applications, and services. ACM, 225–238.

HUDSON, T. C. AND MARK, W. R. 1999. Multiple image warping for remote display of rendered images.
Tech. rep., Chapel Hill, NC, USA.

HUMPHREYS, G., ELDRIDGE, M., BUCK, I., STOLL, G., EVERETT, M., AND HANRAHAN, P. 2001. Wiregl: a
scalable graphics system for clusters. In International Conference on Computer Graphics and Interactive
Techniques: Proceedings of the 28 th annual conference on Computer graphics and interactive techniques.
Vol. 2001. 129–140.

HUMPHREYS, G., HOUSTON, M., NG, R., FRANK, R., AHERN, S., KIRCHNER, P. D., AND KLOSOWSKI, J. T.
2002. Chromium: A stream-processing framework for interactive rendering on clusters. ACM Trans.
Graph. 21, 3, 693–702.

IKONOMOPOULOS, A. AND KUNT, M. 1985. High compression image coding via directional filtering. Elsevier
Signal Processing 8, 2, 179–203.

JURGELIONIS, A., FECHTELER, P., EISERT, P., BELLOTTI, F., DAVID, H., LAULAJAINEN, J. P.,
CARMICHAEL, R., POULOPOULOS, V., LAIKARI, A., PERÄLÄ, P., DE GLORIA, A., AND BOURAS, C.
2009. Platform for distributed 3d gaming. Int. J. Comput. Games Technol. 2009, 1:1–1:15.

KARNI, Z. AND GOTSMAN, C. 2000. Spectral compression of mesh geometry. In Proc. of the 22nd Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRATH’00). New Orleans, Louisiana,
279–286.

KOLLER, D., TURITZIN, M., LEVOY, M., TARINI, M., CROCCIA, G., CIGNONI, P., AND SCOPIGNO, R. 2004.
Protected interactive 3d graphics via remote rendering. ACM Trans. Graph. 23, 695–703.

KRISHNAMURTHY, R., CHAI, B., TAO, H., AND SETHURAMAN, S. 2001. Compression and transmission
of depth maps for image-based rendering. In IEEE International Conference on Image Processing
(ICIP’01). Thessaloniki, Greece, 828–831.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

A Survey of Interactive Remote Rendering Systems 1:25

KUM, S.-U. AND MAYER-PATEL, K. 2005. Real-time multidepth stream compression. ACM Trans. Multime-
dia Comput. Commun. Appl. 1, 128–150.

KUNT, M., BENARD, M., AND LEONARDI, R. 1987. Recent results in high-compression image coding. IEEE
Transactions on Circuits and Systems 34, 11, 1306–1336.

LAI, A. M. AND NIEH, J. 2006. On the performance of wide-area thin-client computing. ACM Trans. Comput.
Syst. 24, 175–209.

LAMBERTI, F. AND SANNA, A. 2007. A streaming-based solution for remote visualization of 3D graphics on
mobile devices. IEEE Trans. Vis. Comput. Graph. 13, 2, 247–260.

LAMBERTI, F., ZUNINO, C., SANNA, A., ANTONINO, F., AND MANIEZZO, M. 2003. An accelerated remote
graphics architecture for pdas. In Proceedings of the eighth international conference on 3D Web technol-
ogy. Web3D ’03. ACM, New York, NY, USA, 55–ff.

LAN, C., SHI, G., AND WU, F. 2010. Compress compound images in H.264/MPGE-4 AVC by exploiting spatial
correlation. IEEE Transactions on Image Processing 19, 4, 946–957.

LAZEM, S., ELTEIR, M., ABDEL-HAMID, A., AND GRACANM, D. 2007. Prediction-based prefetching for re-
mote rendering streaming in mobile virtual environments. In Signal Processing and Information Tech-
nology, 2007 IEEE International Symposium on. IEEE, 760–765.

LEE, Y. AND SONG, B. 2008. An intra-frame rate control algorithm for ultra low delay H.264/AVC coding.
In Proc. of ICASSP’08. Las Vegas, NV, 1041–1044.

LEVOY, M. 1995. Polygon-assisted jpeg and mpeg compression of synthetic images. In Proceedings of the
22nd annual conference on Computer graphics and interactive techniques. SIGGRAPH ’95. ACM, New
York, NY, USA, 21–28.

LI, B., WANG, Z., LIU, J., AND ZHU, W. 2013. Two decades of internet video streaming: A retrospective view.
ACM Trans. Multimedia Comput. Commun. Appl. 9, 1s, 33:1–33:20.

LI, J. AND KUO, C. 1998. A dual graph approach to 3D triangular mesh compression. In International
Conference on Image Processing (ICIP’98). Chicago, Illinois, 891–894.

LI, M., SCHMITZ, A., AND KOBBELT, L. 2011. Pseudo-immersive real-time display of 3d scenes on mobile
devices. In 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), 2011 Inter-
national Conference on. IEEE, 41–48.

LIN, T. AND HAO, P. 2005. Compound image compression for real-time computer screen image transmission.
IEEE Transactions on Image Processing 14, 8, 993–1005.

LIU, Y., LI, Z., AND SOH, Y. 2007. A novel rate control scheme for low delay video communication of
H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video Technology 1, 17, 68–78.

LLUCH, J., GAITÁN, R., CAMAHORT, E., AND VIVÓ, R. 2005. Interactive three-dimensional rendering on
mobile computer devices. In Proceedings of the 2005 ACM SIGCHI International Conference on Advances
in computer entertainment technology. ACE ’05. ACM, New York, NY, USA, 254–257.

MA, K.-L. 2010. A new approach to remote visualization of large volume data. SIGGRAPH Comput.
Graph. 44, 3, 5:1–5:2.

MA, K.-L. AND CAMP, D. M. 2000. High performance visualization of time-varying volume data over a wide-
area network status. In Proceedings of the 2000 ACM/IEEE conference on Supercomputing (CDROM).
Supercomputing ’00. IEEE Computer Society, Washington, DC, USA.

MAHESWARI, D. AND RADHA, V. 2010. Enhanced layer based compound image compression. In Proc. of the
Amrita ACM-W Celebration on Women in Computing in India (A2CWiC’10). Tamilnadu, India, 40:1–
40:8.

MALAKAR, P., NATARAJAN, V., AND VADHIYAR, S. S. 2010. An adaptive framework for simulation and
online remote visualization of critical climate applications in resource-constrained environments. In
Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Net-
working, Storage and Analysis. IEEE Computer Society, 1–11.

MANN, Y. AND COHEN-OR, D. 1997. Selective pixel transmission for navigating in remote virtual environ-
ments. Comput. Graph. Forum 16, 3, 201–206.

MARCELLIN, M. W., BILGIN, A., GORMISH, M. J., AND BOLIEK, M. P. 2000. An overview of jpeg-2000. In
Proceedings of the Conference on Data Compression. DCC ’00. IEEE Computer Society, Washington, DC,
USA, 523–.

MARK, W. 1999. Post-rendering 3D image warping: Visibility, reconstruction, and performance for depth-
image warping. Ph.D. thesis, University of North Carolina at Chapel Hill, Department of Computer
Science.

MARTIN, I. M. 2000. Adaptive rendering of 3d models over networks using multiple modalities. Tech. rep.,
IBM Research.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:26 S. Shi and C. Hsu

MARVIE, J. AND BOUATOUCH, K. 2003. Remote rendering of massively textured 3d scenes through pro-
gressive texture maps. In The 3rd IASTED conference on Visualisation, Imaging and Image Processing.
Vol. 2. 756–761.

MCMILLAN, L. 1997. An image-based approach to three dimensional computer graphics. Ph.D. thesis, Uni-
versity of North Carolina at Chapel Hill, Department of Computer Science.

MERKLE, P., MORVAN, Y., SMOLIC, A., FARIN, D., MULLER, K., WITH, P., AND WIEGAND, T. 2009. The
effects of multiview depth video compression on multiview rendering. Elsevier Signal Processing: Image
Communication 24, 1-2, 73–88.

MILANI, S. AND CALVAGNO, G. 2010. A cognitive approach for effective coding and transmission of 3d video.
In Proceedings of the international conference on Multimedia. MM ’10. ACM, New York, NY, USA, 581–
590.

MORVAN, Y., FARIN, D., AND WITH, P. 2007. Multiview depth-image compression using an extended h.264
encoder. In Springer Advances in Image and Video Technology. Delft, The Netherlands, 675–686.

NADEEM, M., WONG, S., AND KUZMANOV, G. 2010. An efficient realization of forward integer transform in
H.264/AVC intra-frame encoder. In Proc. of SAMOS’10. Samos, Greece, 71–78.

NAVE, I., DAVID, H., SHANI, A., TZRUYA, Y., LAIKARI, A., EISERT, P., AND FECHTELER, P. 2008.
Games@large graphics streaming architecture. In Consumer Electronics, 2008. ISCE 2008. IEEE In-
ternational Symposium on. 1 –4.

NIEH, J., YANG, S. J., AND NOVIK, N. 2003. Measuring thin-client performance using slow-motion bench-
marking. ACM Trans. Comput. Syst. 21, 87–115.

NOIMARK, Y. AND COHEN-OR, D. 2003. Streaming scenes to mpeg-4 video-enabled devices. IEEE Comput.
Graph. Appl. 23, 58–64.

NVIDIA. 2009. Reality server. http://www.nvidia.com/object/realityserver.html.

OBERHUMER, M. 1996. Lzo – a real-time data compression library.
http://www.oberhumer.com/opensource/lzo/.

OH, H. AND HO, Y. 2006. H.264-based depth map sequence coding using motion information of correspond-
ing texture video. In Springer Advances in Image and Video Technology. Hsinchu, Taiwan, 898–907.

OHAZAMA, C. 1999. Opengl vizserver white paper. Silicon Graphics, Inc.

PAIK, S. Microsoft opengl information. http://www.opengl.org/resources/faq/technical/mslinks.htm.

PAJAK, D., HERZOG, R., EISEMANN, E., MYSZKOWSKI, K., AND SEIDEL, H. 2011. Scalable remote ren-
dering with depth and motion-flow augmented streaming. In Computer Graphics Forum. Vol. 30. Wiley
Online Library, 415–424.

PANTEL, L. AND WOLF, L. C. 2002. On the suitability of dead reckoning schemes for games. In Proceedings
of the 1st workshop on Network and system support for games. ACM, 79–84.

PARAVATI, G., SANNA, A., LAMBERTI, F., AND CIMINIERA, L. 2011. An adaptive control system to deliver
interactive virtual environment content to handheld devices. Mobile Networks and Applications 16, 3,
385–393.

PARK, S., KIM, C., AND LEE, S. 2006. Error resilient 3-D mesh compression. IEEE Transactions on Multi-
media 8, 5, 885–895.

PASMAN, W. AND JANSEN, F. 2003. Comparing simplification and image-based techniques for 3d client-
server rendering systems. Visualization and Computer Graphics, IEEE Transactions on 9, 2, 226 – 240.

PAUL, B., AHERN, S., BETHEL, W., BRUGGER, E., COOK, R., DANIEL, J., LEWIS, K., OWEN, J., AND

SOUTHARD, D. 2008. Chromium renderserver: Scalable and open remote rendering infrastructure.
IEEE Transactions on Visualization and Computer Graphics 14, 627–639.

PAYAN, F. AND ANTONINI, M. 2002. Multiresolution 3D mesh compression. In International Conference on
Image Processing (ICIP’02). Rochester, New York, 245–248.

PENG, J., KIM, C., AND KUO, C. 2005. Technologies for 3D mesh compression: A survey. Journal of Visual
Communication and Image Representation 16, 6, 688–733.

PENTA, S. K. AND NARAYANAN, P. 2005. Compression of multiple depth maps for ibr. The Visual Com-
puter 21, 611–618. 10.1007/s00371-005-0337-8.

PERLMAN, S. G., LAAN, R. V. D., COTTER, T., FURMAN, S., MCCOOL, R., AND BUCKLEY, I. 2010. Sys-
tem and method for multi-stream video compression using multiple encoding formats. US Patent No.
2010/0166068A1.

PHIL KARLTON, PAULA WOMACK, J. L. 2005. Opengl graphics with the x window system (version 1.4).
http://www.opengl.org/documentation/specs/.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

A Survey of Interactive Remote Rendering Systems 1:27

POPESCU, V., EYLES, J., LASTRA, A., STEINHURST, J., ENGLAND, N., AND NYLAND, L. 2000. The
warpengine: An architecture for the post-polygonal age. In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 433–442.

PROHASKA, S., HUTANU, A., KAHLER, R., AND HEGE, H.-C. 2004. Interactive exploration of large remote
micro-ct scans. In Proceedings of the conference on Visualization ’04. VIS ’04. IEEE Computer Society,
Washington, DC, USA, 345–352.

QUAX, P., GEUNS, B., JEHAES, T., LAMOTTE, W., AND VANSICHEM, G. 2006. On the applicability of remote
rendering of networked virtual environments on mobile devices. In Systems and Networks Communica-
tions, 2006. ICSNC’06. International Conference on. IEEE, 16–16.

REDDY, H. AND CHUNDURI, R. 2006. MPEG-4 low delay design for HDTV with multi-stream approach.
M.S. thesis, Swiss Federal Institute of Technology, Lausanne (EPFL).

REDERT, A., DE BEECK, M. O., FEHN, C., IJSSELSTEIJN, W., POLLEFEYS, M., GOOL, L. J. V., OFEK, E.,
SEXTON, I., AND SURMAN, P. 2002. Attest: Advanced three-dimensional television system technologies.
In 3DPVT. IEEE Computer Society, 313–319.

RENAMBOT, L., RAO, A., SINGH, R., JEONG, B., KRISHNAPRASAD, N., VISHWANATH, V., CHAN-
DRASEKHAR, V., SCHWARZ, N., SPALE, A., ZHANG, C., GOLDMAN, G., LEIGH, J., AND JOHNSON, A.
2004. SAGE: the scalable adaptive graphics environment. In Proceedings of the WACE.

RICHARDSON, T., STAFFORD-FRASER, Q., WOOD, K. R., AND HOPPER, A. 1998. Virtual network computing.
IEEE Internet Computing 2, 33–38.

ROSS, P. 2009. Cloud computing’s killer app: Gaming. IEEE Spectrum 46, 3, 14.

RUSINKIEWICZ, S. AND LEVOY, M. 2000. Qsplat: a multiresolution point rendering system for large meshes.
In Proceedings of the 27th annual conference on Computer graphics and interactive techniques. SIG-
GRAPH ’00. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 343–352.

RUSINKIEWICZ, S. AND LEVOY, M. 2001. Streaming qsplat: a viewer for networked visualization of large,
dense models. In Proceedings of the 2001 symposium on Interactive 3D graphics. I3D ’01. ACM, New
York, NY, USA, 63–68.

SARKIS, M. AND DIEPOLD, K. 2009. Depth map compression via compressed sensing. In IEEE International
Conference on Image Processing (ICIP’09). Cairo, Egypt, 737–740.

SCHAFER, R. 1998. MPEG-4: a multimedia compression standard for interactive applications and services.
Electronics and Communication Engineering Journal 10, 6, 253–262.

SCHEIFLER, R. W. AND GETTYS, J. 1986. The x window system. ACM Trans. Graph. 5, 79–109.

SCHMALSTIEG, D. 1997. The remote rendering pipeline - managing geometry and bandwidth in distributed
virtual environments. Ph.D. thesis, Institute of Computer Graphics and Algorithms, Vienna University
of Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria.

SCHMIDT, B. K., LAM, M. S., AND NORTHCUTT, J. D. 1999. The interactive performance of slim: a state-
less, thin-client architecture. In Proceedings of the seventeenth ACM symposium on Operating systems
principles. SOSP ’99. ACM, New York, NY, USA, 32–47.

SCHNEIDER, B.-O. AND MARTIN, I. M. 1999. An adaptive framework for 3d graphics over networks. Com-
puters & Graphics 23, 6, 867 – 874.

SCHREIER, R., RAHMAN, A., KRISHNAMURTHY, G., AND ROTHERMEL, A. 2006. Architecture analysis for
low-delay video coding. In Proc. of ICME’06. Toronto, Canada, 2053–2056.

SERRAL-GRACIÀ, R., CERQUEIRA, E., CURADO, M., YANNUZZI, M., MONTEIRO, E., AND MASIP-BRUIN,
X. 2010. An overview of quality of experience measurement challenges for video applications in ip net-
works. In Wired/Wireless Internet Communications. Springer, 252–263.

SEWARD, J. 1996. bzip2 and libbzip2, version 1.0.5: A program and library for data compression.
http://www.bzip.org.

SHADE, J., GORTLER, S., HE, L.-W., AND SZELISKI, R. 1998. Layered depth images. In Proceedings of the
25th annual conference on Computer graphics and interactive techniques. SIGGRAPH ’98. ACM, New
York, NY, USA, 231–242.

SHI, S., HSU, C.-H., NAHRSTEDT, K., HART, J. C., AND CAMPBELL, R. H. 2011a. Using graphics rendering
contexts to enhance the real-time video coding for mobile cloud gaming. In Proceedings of the interna-
tional conference on Multimedia. MM ’11.

SHI, S., JEON, W. J., NAHRSTEDT, K., AND CAMPBELL, R. H. 2009. Real-time remote rendering of 3d video
for mobile devices. In Proceedings of the 17th ACM international conference on Multimedia. MM ’09.
ACM, New York, NY, USA, 391–400.

SHI, S., KAMALI, M., NAHRSTEDT, K., HART, J. C., AND CAMPBELL, R. H. 2010. A high-quality low-delay
remote rendering system for 3d video. In Proceedings of the international conference on Multimedia.
MM ’10. ACM, New York, NY, USA, 601–610.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:28 S. Shi and C. Hsu

SHI, S., NAHRSTEDT, K., AND CAMPBELL, R. 2012a. A real-time remote rendering system for interac-
tive mobile graphics. ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMCCAP) 8, 3s, 46.

SHI, S., NAHRSTEDT, K., AND CAMPBELL, R. H. 2008. View-dependent real-time 3d video compression for
mobile devices. In Proceeding of the 16th ACM international conference on Multimedia. MM ’08. ACM,
New York, NY, USA, 781–784.

SHI, S., NAHRSTEDT, K., AND CAMPBELL, R. H. 2011b. Distortion over latency: Novel metric for measuring
interactive performance in remote rendering systems. In Proceedings of the 2011 IEEE International
Conference on Multimedia and Expo, ICME’11.

SHI, Y., WEN, B., DING, W., QI, N., AND YIN, B. 2012b. Realistic mesh compression based on geometry
image. In Picture Coding Symposium (PCS’12). Krakow, Poland, 133–136.

SHUM, H., KANG, S., AND CHAN, S. 2003. Survey of image-based representations and compression tech-
niques. IEEE Transaction on Circuits and System for Video Technology 13, 11, 1020–1037.

SINGHAL, S. AND ZYDA, M. 1999. Networked virtual environments: design and implementation. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA.

SKODRAS, A., CHRISTOPOULOS, C., AND EBRAHIMI, T. 2001. The JPEG 2000 still image compression stan-
dard. IEEE Signal Processing Magazine 18, 5, 36–58.

SMIT, F. A., VAN LIERE, R., BECK, S., AND FRÖHLICH, B. 2009. An image-warping architecture for vr: Low
latency versus image quality. In VR. IEEE, 27–34.

SNELL, A. AND WILLARD, C. G. 2007. Ibm deep computing visualization. White Paper: http://www-
06.ibm.com/systems/jp/deepcomputing/pdf/idc white paper.pdf.

STAADT, O. G., WALKER, J., NUBER, C., AND HAMANN, B. 2003. A survey and performance analysis of
software platforms for interactive cluster-based multi-screen rendering. In Proceedings of the workshop
on Virtual environments 2003. ACM, 261–270.

STEGMAIER, S., DIEPSTRATEN, J., WEILER, M., AND ERTL, T. 2003. Widening the remote visualization
bottleneck. In Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the 3rd
International Symposium on. Vol. 1. 174 – 179 Vol.1.

STEGMAIER, S., MAGALLÓN, M., AND ERTL, T. 2002. A generic solution for hardware-accelerated remote
visualization. In Proceedings of the symposium on Data Visualisation 2002. VISSYM ’02. Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland, 87–ff.

TECHNOLOGY, M. I. 2007. Thinanywhere. http:// www.thinanywhere.com.

TELER, E. AND LISCHINSKI, D. 2001. Streaming of complex 3d scenes for remote walkthroughs. Comput.
Graph. Forum 20, 3.

THOMAS, G., POINT, G., AND BOUATOUCH, K. 2005. A client-server approach to image-based rendering on
mobile terminals. Tech. Rep. RR-5447, INRIA. January.

TIKHONOVA, A., CORREA, C., AND MA, K.-L. 2010. Explorable images for visualizing volume data. In
Proceedings of IEEE Pacific Visualization Symposium (PacificVis). 177–184.

TIZON, N., MORENO, C., CERNEA, M., AND PREDA, M. 2011. Mpeg-4-based adaptive remote rendering for
video games. In Proceedings of the 16th International Conference on 3D Web Technology. ACM, 45–50.

TORBORG, J. AND KAJIYA, J. T. 1996. Talisman: commodity realtime 3d graphics for the pc. In Proceedings
of the 23rd annual conference on Computer graphics and interactive techniques. SIGGRAPH ’96. ACM,
New York, NY, USA, 353–363.

TOUCH, J. 1995. Defining high-speed protocols: five challenges and an example that survives the challenges.
Selected Areas in Communications, IEEE Journal on 13, 5, 828–835.

TRAN, T., LIU, L., AND WESTERINK, P. 1998. Low-delay MPEG-2 video coding. In Proc. of VCIP’98. San
Jose, CA, 510–516.

TU, T., YU, H., RAMIREZ-GUZMAN, L., BIELAK, J., GHATTAS, O., MA, K.-L., AND O’HALLARON, D. R. 2006.
From mesh generation to scientific visualization: An end-to-end approach to parallel supercomputing.
In Proceedings of the 2006 ACM/IEEE conference on Supercomputing. ACM, 91.

VASA, L. AND SKALA, V. 2007. CODDYAC: Connectivity driven dynamic mesh compression. In Proc. of
3DTV Conference. KosIsland, Greece, 1–4.

VETRO, A., WIEGAND, T., AND SULLIVAN, G. 2011. Overview of the stereo and multiview video coding
extensions of the h.264/mpeg-4 avc standard. Proceedings of the IEEE 99, 4, 626 –642.

WANG, S. AND DEY, S. 2009. Modeling and characterizing user experience in a cloud server based mobile
gaming approach. In Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE. IEEE,
1–7.

WANG, S. AND DEY, S. 2012. Cloud mobile gaming: modeling and measuring user experience in mobile
wireless networks. ACM SIGMOBILE Mobile Computing and Communications Review 16, 1, 10–21.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

A Survey of Interactive Remote Rendering Systems 1:29

WANG, S. AND DEY, S. 2013. Adaptive mobile cloud computing to enable rich mobile multimedia applica-
tions. Multimedia, IEEE Transactions on 15, 4, 870–883.

WANG, S. AND LIN, T. 2009. A unified LZ and hybrid coding for compound image partial-lossless compres-
sion. In Proc. of International Congress on Image and Signal Processing (CISP’09). 1–5.

WANG, S. AND LIN, T. 2012. United coding method for compound image compression. Multimedia Tools and
Application.

WANG, Y., OSTERMANN, J., AND ZHANG, Y. 2001. Video Processing and Communications 1st Ed. Prentice
Hall.

WANG, Z., BOVIK, A., SHEIKH, H., AND SIMONCELLI, E. 2004. Image quality assessment: from error visi-
bility to structural similarity. Image Processing, IEEE Transactions on 13, 4, 600–612.

WEINBERGER, M., SEROUSSI, G., AND SAPIRO, G. 1996. LOCO-I: A low complexity, context-based, lossless
image compression algorithm. In Proc. of Data Compression Conference (DCC’96). Snowbird, Utah, 140–
149.

WIEGAND, T., SULLIVAN, G., BJNTEGAARD, G., AND LUTHRA, A. 2003. Overview of the H.264/AVC video
coding standard. IEEE Transactions on Circuits and Systems for Video Technology 13, 7, 560–576.

WOO, M., NEIDER, J., DAVIS, T., AND SHREINER, D. 1999. OpenGL Programming Guide: The Official Guide
to Learning OpenGL, Version 1.2 3rd Ed. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

WOODWARD, C., VALLI, S., HONKAMAA, P., AND HAKKARAINEN, M. 2002. Wireless 3d cad viewing on a
pda device. In Proceedings of the 2nd Asian International Mobile Computing Conference (AMOC 2002).
Vol. 14. 17.

YANG, S. J., NIEH, J., SELSKY, M., AND TIWARI, N. 2002. The performance of remote display mechanisms
for thin-client computing. In Proceedings of the General Track of the annual conference on USENIX
Annual Technical Conference. USENIX Association, Berkeley, CA, USA, 131–146.

YANG, Z., CUI, Y., ANWAR, Z., BOCCHINO, R., KIYANCLAR, N., NAHRSTEDT, K., CAMPBELL, R. H.,
AND YURCIK, W. 2006. Real-time 3d video compression for tele-immersive environments. In Proc. of
SPIE/ACM Multimedia Computing and Networking (MMCN’06).

YOO, W., SHI, S., JEON, W. J., NAHRSTEDT, K., AND CAMPBELL, R. H. 2010. Real-time parallel remote
rendering for mobile devices using graphics processing units. In ICME. IEEE, 902–907.

YOON, I. AND NEUMANN, U. 2000. Web-based remote rendering with ibrac (image-based rendering acceler-
ation and compression). Comput. Graph. Forum 19, 3, 321–330.

YU, H., MA, K.-L., AND WELLING, J. 2004. A parallel visualization pipeline for terascale earthquake simu-
lations. In Proceedings of the 2004 ACM/IEEE conference on Supercomputing. IEEE Computer Society,
49.

ZANUTTIGH, P. AND CORTELAZZO, G. 2009. Compression of depth information for 3D rendering. In Proc of
3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video. Potsdam, Germany,
1–4.

ZHOU, H. 2006. A survey on ubiquitous graphics. Tech. rep., Hong Kong University of Science and Technol-
ogy. From http://www.cse.ust.hk/ zhouhong/publications.html/.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2014.

View publication statsView publication stats

https://www.researchgate.net/publication/277967155

